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Abstract
Single-particle dynamics of the Anderson impurity model are studied using
both the numerical renormalization group (NRG) method and the local moment
approach (LMA). It is shown that a ‘two-self-energy’ description of dynamics
inherent to the LMA, as well as a conventional ‘single-self-energy’ description,
arise within NRG; each yielding correctly the same local single-particle
spectrum. Explicit NRG results are obtained for the broken symmetry spectral
constituents arising in a two-self-energy description, and the total spectrum.
These are also compared to analytical results obtained from the LMA as
implemented in practice. Very good agreement between the two is found,
essentially on all relevant energy scales from the high-energy Hubbard satellites
to the low-energy Kondo resonance.

1. Introduction

The numerical renormalization group (NRG) method [1, 2] forms a well established, powerful
numerical technique for calculating the properties of quantum impurity and related models.
The basic paradigm here is of course the celebrated Anderson impurity model (AIM) [3],
in particular the Kondo effect arising in strong coupling (see [4] for a review). NRG is not
restricted to calculation of static properties, but can equally handle dynamical properties such
as single-particle spectra, see e.g. [5–7].

Dynamics in particular pose well known difficulties for analytical approaches [4]; be it
in handling strong correlations in general, spanning the full relevant range of energy scales,
satisfying the low-energy dictates of Fermi liquid behaviour and so on. In recent years we
have been developing a local moment approach (LMA) to single-particle dynamics and related
properties of a range of quantum impurity models, see e.g. [8–14]. Physically transparent, and
technically straightforward in practice, the LMA is based on an underlying ‘two-self-energy’
description. As in Anderson’s original work [3], local moments are introduced explicitly from
the outset, leading to two degenerate mean-field saddle points. Spin-flip tunnelling between the
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mean-field states—embodied in dynamical contributions to the two associated self-energies,
naturally absent at pure mean-field level—lifts the erstwhile spin degeneracy of the saddle
points, and restores the singlet symmetry characteristic of the local Fermi liquid state.

As implemented in practice the LMA is of course approximate,as dictated by the particular
approximation chosen for the dynamical contributions to the two self-energies [8–13]. But it
is taken for granted that, in principle, dynamics may be obtained either within an underlying
two-self-energy framework, or within the ‘single-self-energy’ description that provides the
conventional route to single-particle dynamics. In this case, it is natural to ask whether a
two-self-energy description also arises within an essentially exact numerical approach such as
NRG. It is this issue we consider here. We show that according to whether even or odd RG
iterations are considered, both the single- and the two-self-energy descriptions are contained in
the NRG approach, and in particular we obtain explicit NRG results for the composite broken
symmetry spectra inherent to a TSE description. This in turn enables direct comparison to
be made between NRG results for the underlying spectra and those arising from the LMA as
implemented in practice. Very good agreement is found, on all energy scales characteristic of
the problem. Results are given in section 3, following a brief discussion of the background
theory in section 2.

2. Theory

The AIM Hamiltonian [3] is given in standard notation by

Ĥ =
∑

k,σ

εkn̂kσ +
∑

σ

(
εi +

U

2
n̂i−σ

)
n̂iσ +

∑

k,σ

Vik(c
†
iσ ckσ + h.c.) (2.1)

where the first term refers to the non-interacting host, and the second to the impurity with local
interaction U and energy εi . In strong coupling (large U ) the low-energy physics of the AIM
is of course that of the Kondo model [4]. Our focus is the T = 0 local impurity spectrum
D(ω) = − 1

π
Im G(ω), with G(ω) (↔ G(t) = −iθ(t)〈{ciσ (t), c†

iσ }〉) the impurity propagator,

G(ω) = 1

[g−1(ω) − �(ω)]
. (2.2)

Here g(ω) = [ω+ −εi −�(ω)]−1 is the non-interacting propagator with �(ω) = ∑
k V 2

ik[ω+ −
εk]−1 the hybridization function, such that �(ω) = −i�0 for a wide flat-band host [4], with
�0 = πV 2ρhost(ω = 0) the hybridization strength (ω = 0 refers to the Fermi level, and
V ≡ Vik). �(ω) = �R(ω) − i� I (ω) denotes the interaction self-energy, which is merely
defined by the Dyson equation implicit in equation (2.2).

It is of course �(ω) that provides the conventional theoretical route to dynamics, via
perturbation theory (PT) in U [4]. This approach is fine in principle, order by order in PT.
But it is limited in practice, reflecting the inability of PT to handle strong correlations in
general [4]. The practical difficulties arise because construction of �(ω) via conventional
PT based on Hartree-modified propagators, beginning with the static Hartree bubble diagram
�0, amounts to an expansion about the Hartree mean-field saddle point. And this single-
determinantal saddle point is generally unstable to local moment condensation [3], reflected
e.g. in the fact that the standard diagrammatic resummations one might expect to be required to
capture strong correlations—such as the sum of all particle–hole interactions in the transverse
spin channel—give rise to well known divergences/non-analyticities in �(ω) [4, 8, 9].

In these circumstances the LMA simply recognizes [8–10] that the natural mean-field
saddle point about which to expand is unrestricted Hartree–Fock, corresponding to condensed
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local moments. Since Ĥ is invariant under σ ↔ −σ , this saddle point is now of course doubly
degenerate, denoted by α = A or B , corresponding respectively to local moments µ = +|µ|
and −|µ|. Accordingly, the full G(ω) is expressed as [8–10]

G(ω) = 1
2 [G Aσ (ω) + G Bσ (ω)] (2.3a)

=
{

1

[g−1(ω) − �̃Aσ (ω)]
+

1

[g−1(ω) − �̃Bσ (ω)]

}
(2.3b)

with self-energies �̃ασ (ω) (= �̃0
ασ + �ασ (ω) with �̃0

ασ the static Hartree–Fock bubble). Note
that equation (2.3a) is rotationally invariant, since the invariance of Ĥ under σ ↔ −σ implies
generally that G Aσ (ω) = G B−σ (ω) and hence that G(ω) is correctly independent of spin
σ . Direct comparison of equations (2.2) and (2.3b) also clearly implies a general relation
(equation (3.4) of [9]) between the single self-energy �(ω) and the {�̃ασ (ω)}, enabling the
former to be obtained directly from the latter.

At this stage we emphasize the generality of the above considerations. The impurity
propagator G(ω), and hence spectrum D(ω), may be obtained either via the conventional
single-self-energy description embodied in equation (2.2), or via the two-self-energy (TSE)
description inherent in equation (2.3): which one uses is a matter of choice, at least in principle.
In practice, of course, the stability of the underlying mean-field (MF) saddle point arguably
renders the TSE description a more natural choice. The standard diagrammatic resummations
for the dynamical contribution �ασ (ω) to �̃ασ (ω) no longer suffer from non-analyticities, and
as detailed in [8–10] may be employed with impunity. This forms the practical basis of the
LMA. Moreover the relation mentioned above between �(ω) and {�̃ασ (ω)} may be employed
to ascertain directly, and generally, the conditions on {�̃ασ (ω)} under which � I (ω) ∼ O(ω2)

as ω → 0, i.e. exhibits Fermi liquid behaviour. This is merely a matter of algebra, and as
detailed in [9] the requisite condition is

�̃R
Aσ (0) = �̃R

Bσ (0) (≡�R(0)) (2.4)

referring exclusively to the Fermi level ω = 0. In an exact theory for the metallic AIM, this
‘symmetry restoration’ condition should be satisfied automatically (see also section 3). For
the LMA in practice [8–10] it is enforced self-consistently, and thereby determines the local
moment magnitude |µ| (supplanting the usual gap equation for |µ| at pure MF level) [8–10].
It is also central in being able to access the quantum phase transition to a degenerate local
moment phase where such arises, as it does in the pseudogap AIM [12–15].

How well the LMA in practice captures single-particle dynamics can of course be tested by
direct comparison to NRG calculations. For the metallic AIM, this has been considered in [10]
(see also [14]). The resultant LMA scaling spectrum D(ω) versus ω/ωK in the strong coupling,
Kondo regime was shown to be in excellent agreement with NRG results. However an issue
evidently remains. Within the LMA the single-particle spectrum is expressed (equation (2.3))
as D(ω) = 1

2 [DAσ (ω) + DBσ (ω)] (where Dασ (ω) = − 1
π

Im Gασ (ω)). It is this that has
hitherto been compared to NRG results. The considerations above suggest however that there
should exist an NRG counterpart of the spectral densities DAσ (ω) and DBσ (ω) inherent to a
TSE description. It is this we now consider. The resultant Dασ (ω) can in turn be individually
interrogated and compared to the detailed predictions for them arising from the LMA in
practice.

2.1. NRG spectra

In Wilson’s NRG method [1, 2] the AIM is mapped onto a semi-infinite chain. This is
diagonalized iteratively starting from the free impurity, and with a suitably truncated basis
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such that with increasing chain length essentially only the lowest lying states are renormalized.
Spectral functions at each iteration N are calculated [5, 6] from the appropriate matrix
elements connecting the NRG ground state and excited states, themselves related recursively
to those of the previous iteration; and the spectrum for the whole frequency range is built
up from the results for all iterations (roughly speaking, iteration N determines the spectrum
at frequencies ω ∼ D
−(N−1)/2 with D the conduction electron bandwidth and 
 the usual
NRG discretization parameter [1, 2]). The resultant spectrum consists of a set of δ-functions
with known weights at discrete frequencies, which is then broadened on a logarithmic scale
to recover the continuum, see specifically equation (10) of [7]. This is the standard approach
to calculating T = 0 spectra via the NRG, and we follow it here. (An alternative method [7]
focuses directly on obtaining the self-energy �(ω). Although not used here, we simply remark
that it can also be extended to encompass the TSE spectral description considered below.)

NRG spectra may be calculated from either the even set or the odd set of iterations
(the fixed point, here exclusively strong coupling, is a fixed point of the square of the RG
transformation [1, 2]). The same spectrum D(ω) results in either case, as shown explicitly
below. There is however an important difference between even-N and odd-N iterations. In
the former case, the NRG ground state is always a non-degenerate spin singlet. For the odd-N
iterations by contrast we find that the NRG ground state (for any iteration) is a degenerate
doublet, S = 1

2 (where we emphasize that S denotes the total spin angular momentum
quantum number of the entire system). Denoting the Sz = + 1

2 component of this doublet
by ‘A’, and the Sz = − 1

2 component by ‘B’, we can thus construct separate single-particle
spectra (for either spin σ ) from each of these degenerate ground states, denoted by DAσ (ω) and
DBσ (ω) respectively, such that the total, normalized single-particle spectrum is given simply
by D(ω) = 1

2 [DAσ (ω) + DBσ (ω)]. From the invariance of Ĥ under σ ↔ −σ it follows that
DAσ (ω) = DB−σ (ω), whence only (say) DA↑(ω) and DB↑(ω) need be considered in general.
And for the particle–hole symmetric AIM (εi = −U

2 ) considered explicitly below, it follows
further that Dασ (ω) = Dα−σ (−ω) (α = A or B), such that DB↑(ω) = DA↓(ω) = DA↑(−ω)

and D(ω) = D(−ω).
The essential point of the preceding discussion is clear. NRG spectra arising from odd-N

iterations generate in effect a TSE description of single-particle dynamics, enabling both the
Dασ (ω) and the total spectrum D(ω) to be determined. The even-N NRG spectrum by contrast,
arising as it does from the non-degenerate NRG ground state in this case, corresponds to a
conventional single-self-energy description of dynamics, from which D(ω) itself may again
be obtained directly.

3. Results: NRG and LMA

To illustrate the above, figure 1 shows the resultant odd-N NRG spectrum DA↑(ω) versus
ω/�0, for the symmetric AIM with a strong coupling interaction strength Ũ = U/π�0 = 12
(calculated with 
 = 2, retaining ∼ 10 000 states per iteration). We consider first the insets,
which show the corresponding total spectrum D(ω) = 1

2 [DA↑(ω) + DB↑(ω)] from the odd-
N iterations (solid line), as well as D(ω) obtained from the even-N iterations (dotted line).
The resultant symmetric spectra consist as expected of two high-energy Hubbard satellites,
symmetrically disposed at ω ∼ ±U

2 , and the low-energy Kondo resonance. The first fact
to note is that the D(ω) obtained from odd and even iterations are indistinguishable. This
underscores the point made in section 2: in an essentially exact approach, such as NRG, the
two-self-energy and single-self-energy descriptions are fundamentally equivalent, and which
one employs is a matter of choice. We also add (see section 2) that the symmetry restoration
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Figure 1. NRG spectrum π�0 DA↑(ω) versus ω/�0 for Ũ = 12. The upper panel shows DA↑(ω)

on ‘all scales’ including the single, high-energy Hubbard satellite and the Kondo resonance. The
lower panel focuses on the asymmetric, low-energy Kondo resonance. Insets: the corresponding
total spectrum D(ω) = 1

2 [DA↑(ω) + DB↑(ω)] (=D(−ω)) obtained from the odd-N iterations
(solid line), and D(ω) obtained from the even-N iterations (dotted line); the two are in fact
indistinguishable.

condition equation (2.4), �̃R
Aσ (0) = �̃R

Bσ (0) (=0 for the symmetric AIM), is as expected
satisfied within NRG, reflected in the fact that π�0 DA↑(ω = 0) = π�0 DA↓(ω = 0) = 1
(as required by the Friedel sum rule/Luttinger integral theorem [4], and satisfied in practice to
�1% accuracy in the present calculations).

Turning now to the main panels in figure 1, the obvious feature is the intrinsic asymmetry in
DA↑(ω). Only a lower Hubbard satellite is seen in DA↑(ω) (the upper satellite correspondingly
arises in DB↑(ω) = DA↑(−ω)); consistent with the expectation that the ‘A’ state (Sz = + 1

2 )
connects in the atomic limit (Vik = 0) to a purely ↑-spin occupied impurity, from which an
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Figure 2. π�0 DA↑(ω) versus ω/�0 for Ũ = 12, obtained from NRG (solid line) and LMA (dotted
line). The inset continues the comparison on a lower energy scale. NRG is known to overbroaden
the high energy Hubbard satellite; this is reconstructed in figure 6, where further comparison is
made between NRG and LMA.

↑-spin electron may be removed but not added. The asymmetry in DA↑(ω) is not moreover
confined to the high-energy spectrum highlighted in the upper panel, which has an obvious
counterpart in the atomic limit: the low-energy Kondo resonance (lower main panel) is likewise
seen to be strongly asymmetric.

To gain further insight into these results we now consider direct comparison with the LMA
in practice, which affords an analytical handle on the single-particle dynamics. Full details of
the underlying calculations are given in [8] for the symmetric AIM considered here (and in [9]
for the asymmetric case). Here we focus purely on results arising.

In figure 2 NRG and LMA results for π�0 DA↑(ω) are compared, versus ω/�0 (i.e. on an
‘absolute’ energy scale). The chosen Ũ = 12 is simply representative of the large Ũ , strong
coupling behaviour of interest; similar results to those that follow have naturally been obtained
for a range of interaction strengths. Let us first comment on the lower Hubbard satellite in
DA↑(ω) (main panel), which clearly contains the vast majority of the spectral weight. The
LMA satellite is itself a Lorentzian, with an HWHM of 2�0—twice that occurring in the pure
mean-field limit (for the physical reasons explained in [8]), and which behaviour is believed
to be asymptotically exact in strong coupling. With NRG by contrast the Hubbard satellite is
well known to be overbroadened, due to the associated broadening on a logarithmic scale [5, 6]
(as occurs also, although ameliorated somewhat, with the method introduced in [7]). We will
return to this below (see figure 6), and show that the NRG results for the satellite are in fact
consistent with the above Lorentzian behaviour.

Aside from the high energy satellite issue, NRG and LMA results are seen from figure 2
to be in remarkably good agreement. That this persists down to much lower energy scales
is shown further in figure 3, where DA↑(ω) is shown in the top panel and the full symmetric
spectrum D(ω) in the lower panel. Our aim now is to obtain a handle on the characteristic
asymmetry evident in the DA↑(ω) Kondo resonance. This may be obtained analytically from
the LMA [10], formally for |ω̃| 	 1 where ω̃ = ω/ωK and the Kondo scale ωK is (here
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Figure 3. For Ũ = 12, comparison between NRG (solid lines) and LMA (dotted lines) on the
lowest energy scales appropriate to the Kondo resonance. Upper panel: π�0 DA↑(ω) versus ω/�0.
Lower panel: the full spectrum π�0 D(ω) versus ω/�0, with D(ω) = 1

2 [DA↑(ω) + DB↑(ω)].

defined as) the HWHM of the Kondo resonance in D(ω). On the positive frequency side, for
ω̃ = |ω̃| 	 1, the LMA gives the asymptotic behaviour [10]

π�0 DA↑(ω) = 1

[ 4
π

ln(a|ω̃|)]2 + 1
(3.1)

with a 
 0.7 a pure constant; while for negative frequencies by contrast, and −ω̃ = |ω̃| 	 1,

π�0 DA↑(ω) = 5
[

4
π

ln(a|ω̃|)]2
+ 25

. (3.2)

Figure 4 compares NRG results for π�0 DA↑(ω) with this predicted asymptotic behaviour.
The agreement is seen to be very good, and in practice equations (3.1) and (3.2) already
describe the spectra quite accurately for |ω|/ωK � 2 or so. We also add that the full
forms of equations (3.1) and (3.2) are required for the agreement shown in figure 4, i.e. the
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Figure 4. Comparison between NRG results for π�0 DA↑(ω) versus |ω|/ωK (solid lines) and the
predicted asymptotic behaviour equations (3.1) and (3.2) (dotted lines). Lower curves, for positive
frequencies, ω > 0; upper curves, for ω < 0.

|  
|

µ

U
~

Figure 5. NRG local moment |µ| = ∫ 0
−∞ dω [DA↑(ω) − DA↓(ω)] versus Ũ = U/π�0 (solid

line), compared to its mean-field counterpart (dotted line) which in strong coupling Ũ 	 1 gives
|µ| ∼ 1 − 4/π2Ũ . The latter result is in fact asymptotically exact, and is seen to be recovered by
NRG.

behaviour in the |ω|/ωK-range shown is not dominated by the ultimate high frequency
asymptotic behaviours of π2/[16 ln2(|ω|/ωK)] and 5π2/[16 ln2(|ω|/ωK)]. For the full
spectrum D(ω) = 1

2 [DA↑(ω) + DB↑(ω)] ≡ 1
2 [DA↑(ω) + DA↑(−ω)] the corresponding result

is obviously just the weighted sum of equations (3.1) and (3.2) (with ultimate asymptotic
behaviour of 3π2/[16 ln2(|ω|/ωK)] that is exact for the s = 1

2 Kondo model [10]). It has
been shown in [10] that this result for D(ω) itself is in excellent agreement with NRG results.
We regard it as remarkable that the LMA provides an equally compelling description of the
asymmetric Dασ (ω).
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Figure 6. π�0 DA↑(ω) versus ω/�0 for Ũ = 12 obtained from the LMA (dotted line) and NRG
(solid line), with the NRG Hubbard satellite obtained as described in the text. The agreement
is now excellent on all energy scales. The original, overbroadened NRG spectrum is shown for
comparison (dashed line).

The fact that the Dασ (ω) are strongly asymmetric also means of course that the degenerate
odd-N NRG ground states ‘A’ and ‘B’ carry a local moment, equal and opposite for the
two states, with magnitude given by |µ| = ∫ 0

−∞ dω [DA↑(ω) − DA↓(ω)]. The resultant |µ|
is shown in figure 5 as a function of Ũ , and compared to its pure mean-field counterpart.
The latter is given from solution of1 |µ| = 2

π
tan−1(U |µ|

2�0
) (and in practice the LMA |µ|

determined from symmetry restoration is very close to the MF value, exponentially so in
strong coupling Ũ 	 1 [8]). Recognizing that in strong coupling the Kondo resonance carries
exponentially small weight and thus makes essentially no contribution to the resultant |µ|, the
leading asymptotic behaviour of the moment may be determined exactly from second order
perturbation theory in the hybridization Vik. It is found thereby to be given by |µ| ∼ 1−4/π2Ũ ,
which amusingly is precisely the leading result obtained from pure mean-field, and which as
seen from figure 5 is indeed recovered correctly from the NRG calculations.

We return finally to the issue of the overbroadened NRG Hubbard satellite, and show
that the ‘raw’ NRG results are entirely consistent with a Lorentzian satellite of width
2�0. To that end we calculate, as a sum of poleweights, the cumulative NRG spectrum
FNRG(ω) = ∫ ω

−∞ dω DA↑(ω); the corresponding result for the pure Lorentzian would be FL =
1
π

tan−1(ω−ω0
2�0

)+ 1
2 with ω0 ∼ −U

2 the satellite maximum. Writing FNRG(ω) = FL(ω)+δF(ω)

with δF(ω) thus defined, the NRG poles in DA↑(ω) contributing to δF(ω) are broadened in
the usual logarithmic fashion, and added to the pure Lorentzian contribution (the net spectral
weight below the Fermi level is of course preserved). If the NRG results are consistent with
the Lorentzian, little deviation from this form should result. That this is indeed the case is
shown in figure 6, and NRG and LMA results now agree well on all energy scales including
the high-energy Hubbard satellite.

1 We consider explicitly the usual ‘wide band’ case where the conduction bandwidth D is by far the largest energy
scale.
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4. Concluding remarks

In this paper we have considered first a general issue: does a two-self-energy description
of dynamics that is inherent to the local moment approach also arise within the numerical
renormalization group method? The answer to this question is clearly yes—both it and a
conventional single-self-energy framework arise naturally within NRG, according to whether
odd or even RG iterations are considered. In consequence, explicit NRG results for the
composite broken symmetry spectra underlying the two-self-energy description may be
obtained: DAσ (ω) and DBσ (ω) such that D(ω) = 1

2 [DAσ (ω) + DBσ (ω)] gives the total
impurity spectrum (and with D(ω) coincident for both odd/even iterations). These in turn
have been compared to results arising from the LMA as it is implemented in practice, and very
good agreement found on essentially all characteristic energy scales from the high-energy
Hubbard satellites to the low-energy Kondo resonance.

We also add that our essential conclusion is naturally not specific to the metallic Anderson
impurity model considered here: a two-self-energy description will arise for essentially any
quantum impurity model, such as the pseudogap AIM [12, 14–16] (where the TSE description
is in general a necessity and not a luxury), and more generally for lattice-based models such
as the periodic Anderson model within the framework of dynamical mean-field theory [16].
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